correction: none

S = 2.39	Extinction correction: none
4973 reflections	Atomic scattering factors
414 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 4F_o^2/\sigma^2(F_o)$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

 $B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	Beq
Col	0.6795 (1)	0.419	0.12506 (9)	1.78 (2)
S11	0.7665 (2)	0.4343 (2)	-0.0252 (2)	2.61 (4)
S12	0.6007 (2)	0.4065 (2)	0.2637 (2)	2.57 (4)
011	0.8306 (6)	0.3764 (6)	0.2185 (5)	2.6(1)
O12	1.0148 (6)	0.4419 (8)	0.2762 (6)	3.4 (2)
O13	0.6277 (6)	0.2690 (5)	0.0886 (6)	2.6(1)
O14	0.4603 (7)	0.1713 (6)	0.0364 (7)	3.5 (2)
O15	0.6330 (8)	0.3042 (8)	0.3260 (7)	4.1 (2)
O16	0.6145 (8)	0.5078 (8)	0.3275 (7)	4.3 (2)
N11	0.7382 (7)	0.5694 (7)	0.1586 (7)	2.5 (2)
N12	0.5220(7)	0.4519 (6)	0.0343 (6)	2.1 (1)
C11	0.9111 (9)	0.4527 (9)	0.2243 (7)	2.5 (2)
C12	0.8682 (8)	0.5582 (8)	0.1595 (8)	2.3 (2)
C13	0.8759 (9)	0.5431 (9)	0.0391 (8)	2.6(2)
C14	0.834(1)	0.648(1)	-0.0277 (9)	3.5 (2)
C15	1.0035 (9)	0.513(1)	0.0365 (9)	3.6 (2)
C16	0.848 (1)	0.302(1)	-0.017(1)	4.4 (2)
C17	0.5113 (9)	0.2594 (8)	0.0607 (8)	2.4 (2)
C18	0.4471 (7)	0.3677 (8)	0.0691 (6)	1.9(1)
C19	0.4405 (8)	0.3912 (9)	0.1868 (8)	2.7 (2)
C110	0.382(1)	0.298(1)	0.237(1)	4.5 (3)
C111	0.379(1)	0.508(1)	0.191 (1)	4.9 (3)
Co2	0.84196 (9)	0.8668(1)	0.37470 (8)	1.38(2)
S21	0.7117(2)	0.8585(2)	0.4905 (2)	1.94 (3)
S22	0.9694 (2)	0.8909(2)	0.2766 (2)	1.72 (3)
O21	0.7185(6)	0.8136 (6)	0.2546 (5)	2.3(1)
O22	0.5304 (6)	0.8494 (8)	0.1706 (6)	3.4 (2)
023	0.9033 (5)	0.7206 (5)	0.4116 (5)	2.0(1)
O24	1.0691 (6)	0.6377 (6)	0.5066 (7)	3.2 (2)
O25	0.9655 (6)	0.8056 (7)	0.1931 (6)	3.0(1)
O26	0.9686 (6)	1.0053 (6)	0.2377 (6)	2.5(1)
N21	0.7663 (6)	1.0102 (6)	0.3288 (6)	1.9(1)
N22	0.9738 (5)	0.9107 (6)	0.4974 (5)	1.6(1)
C21	0.6252 (7)	0.8710(9)	0.2350 (7)	2.2 (2)
C22	0.6372 (8)	0.9813 (9)	0.3024 (8)	2.3 (2)
C23	0.6045 (8)	0.9604 (9)	0.4116 (8)	2.4 (2)
C24	0.627 (1)	1.067(1)	0.4821 (9)	3.7 (2)
C25	0.4741 (8)	0.925(1)	0.392 (1)	4.2 (3)
C26	0.642(1)	0.7232 (9)	0.462(1)	4.1 (2)
C27	1.0126 (8)	0.7216 (8)	0.4712 (7)	2.1 (2)
C28	1.0699 (7)	0.8362 (7)	0.4870 (7)	1.8(1)
C29	1.1118 (6)	0.8709 (8)	0.3875 (7)	1.9(1)
C210	1.1889 (9)	0.7844 (9)	0.3505 (9)	2.9 (2)
C211	1.1775 (8)	0.9833 (8)	0.407(1)	2.9 (2)
01 <i>W</i>	0.7320(7)	0.0582 (7)	0.0899 (7)	3.6 (2)
O2 <i>W</i>	0.100(1)	0.221(1)	0.292 (1)	8.3 (4)

Table 2. Selected geometric parameters (Å, °)

Co1-S11	2.376 (3)	Co2-S21	2.366 (3)
Co1	2.180(3)	Co2—S22	2.185 (2)
Co1-011	1.913 (6)	Co2-O21	1.906 (6)
Co1-013	1.918 (6)	Co2	1.912 (6)
Co1-N11	1.948 (8)	Co2N21	1.956 (7)
Col-N12	1.934 (7)	Co2—N22	1.945 (6)
S11-Co1-S12	179.2 (1)	S21-Co2-S22	174.0 (1)
S11-Co1-N11	84.2 (3)	S21-Co2-N21	84.7 (3)
S12-Co1-O11	90.1 (2)	S22-Co2-O2I	94.6 (2)
S12-Co1-N12	87.3 (3)	S22-Co2-N22	84.3 (2)
011-Co1-N11	84.2 (3)	O21-Co2-N21	82.8 (3)
O11-Co1-N12	175.9 (3)	O21—Co2—N22	175.8 (3)
O13-Co1-N11	177.2 (4)	O23-Co2-N21	174.8 (3)
O13-Co1-N12	82.1 (3)	O23-Co2-N22	83.7 (3)

© 1996 International Union of Crystallography Printed in Great Britain - all rights reserved

All non-H atoms were located by direct methods and difference Fourier synthesis. The structure was refined on F by fullmatrix least-squares techniques. When the refinements were carried out by use of the set of the enantiomeric parameters of the R(S) configuration the residual values converged to R = 0.073 and wR = 0.086, respectively. This fact indicated that the R(S) configuration is probably the correct choice.

All calculations were performed using MolEN (Fair, 1990) on a VAX computer. Molecular graphics were obtained with ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PT1040). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Elder, R. C., Kennard, G. J., Payne, M. D. & Deutsch, E. (1978). Inorg. Chem. 17, 1296-1303.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lange, B. A., Libson, K., Deutsch, E. & Elder, R. C. (1976). Inorg. Chem. 15, 2985-2989.
- Meester, P. & Hodgson, D. J. (1976). J. Chem. Soc. Dalton Trans. pp. 618-621.
- Okamoto, K., Wakayama, K., Einaga, H., Yamada, S. & Hidaka, J. (1983). Bull. Chem. Soc. Jpn, 56, 165-170.
- Okamoto, K., Yonemura, T., Konno, T. & Hidaka, J. (1992). Bull. Chem. Soc. Jpn, 65, 794-798.
- Yonemura, T., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (1993). Chem. Lett. pp. 1123-1126.

Acta Cryst. (1996). C52, 1392-1394

Tetraaquabis(3,5-dinitrobenzoato-0)cobalt(II) Tetrahydrate

M. NAWAZ TAHIR, DINCER ÜLKÜ AND ELMAN M. Μőνsümov

Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey. E-mail: ftahir@eti.cc.hun. edu.tr

(Received 28 November 1995; accepted 29 January 1996)

Abstract

In the title compound, $[Co(C_7H_3N_2O_6)_2(H_2O)_4].4H_2O$, the coordination polyhedron around the Co atom is a slightly distorted octahedron involving one carboxy O atom from each 3,5-dinitrobenzoato ligand and the O atoms of four water molecules. The mean Co-Owater distance is 2.052 (2) Å, while the mean Co-Obenzoato distance is significantly longer at 2.102 (11) Å. There are four water molecules of crystallization per asymmetric unit. Intra- as well as intermolecular hydrogen bonds exist in the structure.

Comment

3,5-Dinitrobenzoic acid is used for the preparation of amoxycillin and flucloxacillin (Amin, El-Ansary & Issa, 1994). The structures of two polymorphs of 3,5-dinitrobenzoic acid have been reported (Prince, Fronczek & Gandour, 1991). The complexes of 3,5-dinitrobenzoate with Zn^{II}, Cd^{II} and Hg^{II} have been synthesized and IR investigations of these complexes showed that the carboxylate ions coordinate to the central metal atom ion in a bidentate or bridging fashion (Odunola, 1993). We report herein the synthesis and structure of a cobalt complex of 3,5-dinitrobenzoic acid, (I).

The coordination polyhedron around the Co atom is a slightly distorted octahedron (Fig. 1). Four water O atoms constitute the basal plane of the octahedron, while two O atoms from two different carboxy groups occupy apical positions and complete the sixfold coordination. The dihedral angle between the benzene rings of the ligands is $16.3(2)^{\circ}$. As can be seen from the torsion angles given in Table 2, neither the carboxy nor the nitro groups are coplanar with their respective benzene rings. The long axis of the molecule is parallel to the crystallographic c axis and the a axis is nearly normal to the benzene rings. The water molecules are involved in both intra- and intermolecular hydrogen bonds (Table 3).

Fig. 1. A view of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.

Experimental

The title compound was synthesized by the reaction of hot aqueous solutions of CoSO₄.7H₂O and sodium 3,5-dinitrobenzoate in a 1:2 stoichiometric ratio. The mixture was filtered and crystals were obtained after allowing the solution to stand for a few days at room temperature.

Mo $K\alpha$ radiation

Cell parameters from 25

 $0.30 \times 0.20 \times 0.15$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta = 8.59 - 18.03^{\circ}$

 $\mu = 0.794 \text{ mm}^{-1}$

T = 295 K

Prism

Reddish

Crystal data

 $[Co(C_7H_3N_2O_6)_2(H_2O)_4]$.- $4H_2O$ $M_r = 625.279$ Triclinic $P\overline{1}$ a = 7.204(1) A b = 11.752(2) Å c = 15.057(1) Å $\alpha = 103.14(1)^{\circ}$ $\beta = 98.37 (1)^{\circ}$ $\gamma = 92.45(1)^{\circ}$ V = 1224.3 (6) Å³ Z = 2 $D_x = 1.696 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf–Nonius CAD-4	2944 observed reflections
diffractometer	$[I > 3\sigma(I)]$
$\omega/2\theta$ scans	$R_{\rm int} = 0.017$
Absorption correction:	$\theta_{\rm max} = 26.32^{\circ}$
ψ scans (<i>MolEN</i> ; Fair,	$h = -8 \rightarrow 8$
1990)	$k = -14 \rightarrow 0$
$T_{\min} = 0.958, T_{\max} =$	$l = -18 \rightarrow 18$
0.999	3 standard reflections
5198 measured reflections	frequency: 120 min
4694 independent reflections	intensity decay: 1.6%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.036	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.042	Extinction correction: none
S = 1.27	Atomic scattering factors
2765 reflections	from International Tables
352 parameters	for X-ray Crystallography
$w = 1/\sigma^2(F)$	(1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.0007$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	z	Bea
Co	0.23237 (6)	0.24792 (4)	0.49528 (3)	2.452 (8)
01	0.1293 (3)	0.2282 (2)	0.6119(1)	3.14 (5)
O2	0.0796 (4)	0.4090 (2)	0.6850(2)	3.93 (6)
03	0.3412 (3)	0.2698 (2)	0.3811(1)	3.31 (5)
04	0.3161 (4)	0.0903 (2)	0.2891 (2)	4.24 (6)
05	0.3092 (3)	0.4250 (2)	0.5554 (2)	3.30 (5)
O6	-0.0359 (3)	0.2805 (2)	0.4334 (2)	3.78 (6)
07	0.1520(3)	0.0703 (2)	0.4355 (2)	3.33 (5)
08	0.4996 (3)	0.2084 (2)	0.5542 (2)	3.63 (6)
09	0.1365 (4)	-0.0847 (2)	0.7672 (2)	5.12 (7)
010	0.0033 (4)	-0.0722 (2)	0.8888 (2)	5.04 (7)
011	-0.0640(5)	0.3305 (3)	1.0636(2)	6.10(8)

-0.1819 (3)	0.4418 (2)	0.9778 (2)	4.15 (6)
0.4319 (4)	0.6090 (2)	0.2541 (2)	5.15 (7)
0.5732 (4)	0.5891 (2)	0.1353 (2)	4.91 (7)
0.5474 (4)	0.1985 (3)	-0.0683 (2)	5.94 (8)
0.3729 (4)	0.0638 (2)	-0.0381 (2)	4.23 (6)
0.5145 (4)	0.1123 (2)	0.7099 (2)	5.31 (7)
0.2777 (3)	-0.0700 (2)	0.5563 (2)	3.57 (6)
0.2501 (3)	0.5834 (2)	0.4472 (2)	3.61 (6)
0.9209 (5)	0.3471 (2)	0.2716(2)	6.30 (9)
0.0592 (4)	-0.0310 (3)	0.8284 (2)	3.79 (7)
-0.1012 (4)	0.3563 (3)	0.9893 (2)	3.53 (7)
0.4914 (4)	0.5491 (3)	0.1890(2)	3.46 (7)
0.4591 (4)	0.1596 (3)	-0.0171 (2)	3.33 (7)
0.0433 (4)	0.2531 (3)	0.7585 (2)	2.32 (7)
0.0637 (4)	0.1360 (3)	0.7563 (2)	2.45 (7)
0.0309 (5)	0.0939 (3)	0.8318 (2)	2.59 (7)
-0.0216 (5)	0.1630(3)	0.9090(2)	2.93 (7)
-0.0433 (4)	0.2780(3)	0.9084 (2)	2.57 (7)
-0.0131 (4)	0.3262 (3)	0.8355 (2)	2.55 (7)
0.0881 (5)	0.3017 (3)	0.6790(2)	2.56 (7)
0.3969 (4)	0.2527 (3)	0.2290 (2)	2.51 (7)
0.4214 (4)	0.3736 (3)	0.2438 (2)	2.56 (7)
0.4634 (5)	0.4211 (3)	0.1726 (2)	2.52 (7)
0.4804 (5)	0.3546 (3)	0.0869 (2)	2.75 (7)
0.4505 (5)	0.2348 (3)	0.0746 (2)	2.59 (7)
0.4093 (5)	0.1820 (3)	0.1432 (2)	2.59 (7)
0.3490 (5)	0.1989 (3)	0.3062 (2)	2.83 (7)
	$\begin{array}{c} -0.1819 \ (3) \\ 0.4319 \ (4) \\ 0.5732 \ (4) \\ 0.5732 \ (4) \\ 0.5732 \ (4) \\ 0.5732 \ (4) \\ 0.5732 \ (4) \\ 0.5745 \ (4) \\ 0.2777 \ (3) \\ 0.2501 \ (3) \\ 0.2501 \ (3) \\ 0.0592 \ (4) \\ -0.0121 \ (4) \\ 0.4914 \ (4) \\ 0.0433 \ (4) \\ 0.0637 \ (4) \\ 0.0309 \ (5) \\ -0.0216 \ (5) \\ -0.0433 \ (4) \\ -0.0131 \ (4) \\ 0.0369 \ (4) \\ 0.4804 \ (5) \\ 0.4804 \ (5) \\ 0.4804 \ (5) \\ 0.4505 \ (5) \\ 0.0493 \ (5) \\ 0.3490 \ (5) \\ \end{array}$	$\begin{array}{c cccc} -0.1819 (3) & 0.4418 (2) \\ 0.4319 (4) & 0.6090 (2) \\ 0.5732 (4) & 0.5891 (2) \\ 0.5474 (4) & 0.1985 (3) \\ 0.3729 (4) & 0.0638 (2) \\ 0.5145 (4) & 0.1123 (2) \\ 0.2777 (3) & -0.0700 (2) \\ 0.2501 (3) & 0.5834 (2) \\ 0.9209 (5) & 0.3471 (2) \\ 0.0592 (4) & -0.0310 (3) \\ -0.1012 (4) & 0.3563 (3) \\ 0.4914 (4) & 0.5491 (3) \\ 0.4591 (4) & 0.1596 (3) \\ 0.0433 (4) & 0.2531 (3) \\ 0.0309 (5) & 0.0939 (3) \\ -0.0216 (5) & 0.1630 (3) \\ -0.0131 (4) & 0.3262 (3) \\ 0.0881 (5) & 0.3017 (3) \\ 0.4591 (4) & 0.3736 (3) \\ 0.4634 (5) & 0.2346 (3) \\ 0.4634 (5) & 0.2346 (3) \\ 0.4593 (5) & 0.1820 (3) \\ 0.4593 (5) & 0.1820 (3) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2. Selected geometric parameters (Å, °)

Co—O1	2.059 (2)	Co08	2.116 (2)
Co—O3	2.052 (2)	O1C7	1.253 (4)
Co—O5	2.087 (2)	O2C7	1.248 (4)
Co—O6	2.110 (2)	O3C14	1.250 (4)
Co—O7	2.096 (2)	O4C14	1.248 (4)
$\begin{array}{c} 01 - C_0 - 03 \\ 01 - C_0 - 05 \\ 01 - C_0 - 06 \\ 01 - C_0 - 07 \\ 01 - C_0 - 08 \\ 03 - C_0 - 05 \\ 03 - C_0 - 06 \\ 03 - C_0 - 07 \\ 03 - C_0 - 08 \\ 05 - C_0 - 06 \end{array}$	178.53 (8) 90.80 (9) 91.4 (1) 88.71 (9) 89.0 (1) 88.20 (9) 89.7 (1) 92.30 (9) 89.9 (1) 93.40 (9)	05Co07 05Co08 06Co07 06Co08 07Co08 Co01C7 Co03C14 01C702 03C1404	179.3 (1) 88.82 (9) 86.09 (9) 177.74 (9) 91.69 (9) 131.6 (2) 130.8 (2) 126.2 (3) 126.2 (3)
09N1C3C2	11.1 (5)	015N4C12C11	22.8 (5)
010N1C3C4	12.0 (5)	016N4C12C13	23.7 (5)
011N2C5C4	25.4 (5)	C2C1C701	4.9 (4)
012N2C5C6	25.5 (4)	C6C1C702	2.3 (5)
013N3C10C11	161.8 (3)	C9C8C1403	-2.4 (5)
014N3C10C9	162.2 (3)	C13C8C1404	-2.0 (5)

Table 3. Hydrogen-bonding geometry (Å, °)

$D - H \cdots A$	<i>D</i> —Н	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = H \cdots A$
O5—H51···O2	0.80	2.06	2.767 (4)	146.6
O5—H52···O19	1.08	1.67	2.747 (4)	171.2
O6—H61···O19 ⁱ	0.91	1.92	2.808 (4)	165.1
O6—H62· · ·O20 ⁱⁱ	1.03	1.72	2.704 (4)	157.6
O7H71···O18	0.85	1.97	2.803 (3)	167.9
O7—H72· · ·O4	0.97	1.78	2.699 (4)	156.5
O8—H81···O17	0.79	2.04	2.815 (4)	166.6
O8—H82· · ·O18 ⁱⁱⁱ	0.86	1.94	2.785 (4)	167.5
017H171+++O4 ⁱⁱⁱ	0.87	1.91	2.724 (4)	155.7
O18—H181···O17	0.94	2.12	3.022 (3)	161.5
O18—H182···O6 ^{iv}	1.04	2.02	3.010(3)	158.6
O19—H192· · ·O2 ⁱ	0.99	1.93	2.887 (4)	162.0
O20—H201···O2 ^v	0.88	1.98	2.792 (3)	152.4
Symmetry codes: (i) $-x$, $1-y$, $1-z$; (ii) $x-1$, y , z ; (iii) $1-x$, $-y$, $1-z$;				

(iv) -x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z.

H atoms bound to C atoms were placed geometrically at a distance of 1.05 Å, while water H atoms were taken from difference maps. For all H atoms, $U_{iso} = 1.3U_{eq}$ for the parent atom and a riding model was adopted.

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN SIMPEL. Program(s) used to refine structure: MolEN LSFM. Molecular graphics: ORTEP (Johnson, 1965) in MolEN. Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1053). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Amin, A. S., El-Ansary, A. L. & Issa, Y. M. (1994). Talanta, 41, 691-694.
- Enraf-Nonius (1993). CAD-4 EXPRESS Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Odunola, O. A. (1993). Synth. React. Inorg. Met. Org. Chem. 23, 1241-1249.
- Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.

Acta Cryst. (1996). C52, 1394-1399

The Pseudo-Racemic Complex Bis[tris(2,2'bipyridine)ruthenium(II)] Hexacyanocobaltate(III) Chloride Octahydrate, [Ru(bpy)₃]₂[Co(CN)₆]Cl.8H₂O

Hatsue Tamura,^a Noriaki Ikeda,^b Tomohiro Iguro,^b Takeshi Ohno^b and Gen-etsu Matsubayashi^a

^aDepartment of Applied Chemistry, Faculty of Engineering, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560, Japan, and ^bDepartment of Chemistry, Faculty of Science, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560, Japan. E-mail: tamura@ch.wani.osaka-u.ac.jp

(Received 12 September 1995; accepted 2 January 1996)

Abstract

Crystals of $[Ru (C_{10}H_8N_2)_3]_2 [Co (CN)_6] Cl.8H_2O (C_{10}H_8N_2 = bpy = 2,2'-bipyridine) which belong to the space group C2 are characterized by two 'pseudo-racemic' crystallographically independent <math>[Ru(bpy)_3]^{2+}$ cations. Three kinds of layers are found in the crys-